Title: Graphing Trends in the Periodic Table-Student's Copy **Purpose:** To graphically display various properties of selected elements on the periodic table as related to their atomic numbers to determine if periodicity exists **Materials:** graphing calculator (Texas Instruments model TI-82 is used in this lesson.) | IA
3
Li
1.23 | IIA
4
Be
0.89
215 | GRAPHING
IIIA
5
B
0.80
191 | TRENDS
IVA
6
C
0.77
260 | IN THE PERI
VA
7
N
0.70
335 | ODIC TABI
VIA
8
O
0.66
314 | VIIA
9
F
0.64
402 | VIIIA
10
Ne
0.67
497 | |--|--|---|--|--|---|-------------------------------|----------------------------------| | 11
Na
1.57
119 | 12
Mg
1.36
176 | 13
A1
1.25
138 | 14
Si
1.17
188 | 15
P
1.10
242 | 16
S
1.04
239 | 17
C1
0.99
299 | 18
Ar
0.98
363 | | 19
K
2.03
100
37
Rb
2.16
96 | 20
Ca
1.74
141
38
Sr
1.91
131 | | | 0.66 | atomic
symbol
atomic
energy
electro | radius
to remove | e easiest | | 55
Cs
2.35
90 | 56
Ba
1.98
120 | | | | | | | ## **Procedure:** - 1. Make a **prediction** as to what will happen to the sizes of atoms as one progresses from left to right across a period on the periodic table. (Example: the sizes of atoms will (increase, decrease, remain constant) as one goes left to right across a period. - 2. According to your prediction, make a **sketch** of how you would EXPECT a graph to appear if you plotted atomic number on the X-axis and atomic radius (size of the atom) on the Y-axis. (5 cm X 5 cm size is appropriate.) - 3. Using the information supplied in the chart above, enter the atomic numbers of elements 3-20 in L1 and the corresponding atomic radius in L2 in your **graphing calculator**. Create a connected-dot line graph and display it on your calculator screen. Check for accuracy (with your beloved teacher!) before proceeding. If your graph is acceptable, **sketch** it on your answer sheet. - 4. Record any **similarities and differences** between your predicted graph and the graph of actual data. - 5. **What does happen** to the sizes of atoms as one goes left to right across a period? - 6. Looking at the Bohr models of atoms in a period, offer an **explanation as to WHY** the atomic size changes as it does. - 7-12. Repeat steps 1-6 above, except this time refer to **the change in the size of atoms going down a group**. Use elements #3, 11, 19, 37, & 55 for one graph and #4, 12, 20, 38, & 56 for another. - 13-18. Repeat steps 1-6 above, except this time refer the energy required to remove the easiest electron as one goes across a period. Use elements #3-20. - 19-24. Repeat steps 1-6 above, except this time refer to **the energy required to remove the easiest electron as one goes down a group**. Use elements #3, 11, 19, 37, & 55 for one graph and #4, 12, 20, 38, & 56 for another. - 25. How many ACTUAL graphs created in this activity demonstrated some form of repeating pattern? Those that do would be demonstrating "periodicity" or properties that reoccur periodically---over and over again. - 26. What PROPERTIES of elements visibly show periodic trends when their values are graphed?